통일연구원 전자도서관

로그인

통일연구원 전자도서관

소장자료검색

  1. 메인
  2. 소장자료검색
  3. 단행본

단행본

단행본Analytical methods for social research

Data analysis using regression and multilevel/hierarchical models

발행사항
Cambridge; New York : Cambridge University Press, 2007
형태사항
xxii, 625 p. : ill.; 26cm
ISBN
9780521686891
청구기호
310.16 G314d
서지주기
Includes bibliographical references (p. 575-600) and indexes
소장정보
위치등록번호청구기호 / 출력상태반납예정일
이용 가능 (1)
1자료실00010615대출가능-
이용 가능 (1)
  • 등록번호
    00010615
    상태/반납예정일
    대출가능
    -
    위치/청구기호(출력)
    1자료실
책 소개
Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: http://www.stat.columbia.edu/~gelman/arm/

Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces and demonstrates a wide variety of models, at the same time instructing the reader in how to fit these models using freely available software packages.

목차

1. Why?; 2. Concepts and methods from basic probability and statistics; Part I. A. Single-Level Regression: 3. Linear regression: the basics; 4. Linear regression: before and after fitting the model; 5. Logistic regression; 6. Generalized linear models; Part I. B. Working with Regression Inferences: 7. Simulation of probability models and statistical inferences; 8. Simulation for checking statistical procedures and model fits; 9. Causal inference using regression on the treatment variable; 10. Causal inference using more advanced models; Part II. A. Multilevel Regression: 11. Multilevel structures; 12. Multilevel linear models: the basics; 13. Multilevel linear models: varying slopes, non-nested models and other complexities; 14. Multilevel logistic regression; 15. Multilevel generalized linear models; Part II. B. Fitting Multilevel Models: 16. Multilevel modeling in bugs and R: the basics; 17. Fitting multilevel linear and generalized linear models in bugs and R; 18. Likelihood and Bayesian inference and computation; 19. Debugging and speeding convergence; Part III. From Data Collection to Model Understanding to Model Checking: 20. Sample size and power calculations; 21. Understanding and summarizing the fitted models; 22. Analysis of variance; 23. Causal inference using multilevel models; 24. Model checking and comparison; 25. Missing data imputation; Appendixes: A. Six quick tips to improve your regression modeling; B. Statistical graphics for research and presentation; C. Software; References.